Lead-acid batteries have existed for over a century with little change. Advances have occurred in lead-acid battery technology to increase storage density, extend usable service life and improve cold weather performance at comparatively lower cost than modern battery technologies. As a result, derivatives of lead-acid battery technology still have multiple applications in modern boating.
The history of lead-acid batteries goes back prior to World War I, when battery-powered passenger vehicles traveled along the public roads. Designers of submarines that operated during both WWI and WWII installed banks of batteries to provide low-speed propulsion over short-distances when the vessel traveled submerged. During later years, a segment of the fishing industry that operated low-speed trolling vessels often used lead-acid batteries to provide vessel propulsion. The batteries also found application in mining locomotives, small industrial locomotives as well as in multi-stop post office and dairy delivery vehicles.
While built in a variety of sizes, the essential chemistry involving plates of lead and sulfuric acid remained unchanged for decades. Lead-acid batteries are temperature sensitive, providing optimal performance between 10-deg C (50-deg F) and 50-deg C (110-deg F). At minus 25-deg C (-15-deg F), the battery will typically deliver 20% of the power that it would deliver at 25-deg C (75-deg F). Repeated deep-discharge from 100% to below 10% of storage capacity greatly reduces service life expectancy. Sulfur build-up on lead plates reduces storage capacity while fully drained batteries often cannot be recharged.